首页> 外文OA文献 >Dynamical principles in neuroscience
【2h】

Dynamical principles in neuroscience

机译:神经科学的动力学原理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?
机译:在过去的半个世纪中,神经系统和大脑功能的动态建模取得了成功的历史。例如,这包括对神经节律行为某些特征的解释和预测。在过去的二十年中,已经提出了许多有趣的基于生理实验的学习和记忆动力学模型。现在甚至存在意识的动力学模型。通常,这些模型和结果基于传统方法和非线性动力学(包括动态混沌)范式。然而,由于以下几个原因,神经系统是非线性动力学的不寻常主题:(i)即使是只有几个神经元和突触连接的最简单的神经网络,也具有大量的变量和控制参数。这些使神经系统具有适应性和灵活性,对它们的生物学功能至关重要。 (ii)与由众所周知的基本原理描述的传统物理系统相反,支配神经系统动力学的第一原理是未知的。 (iii)尽管具有不同的体系结构和不同的复杂性水平,但许多不同的神经系统仍表现出相似的动态。 (iv)通常不了解网络体系结构和连接强度,因此,在某种意义上,动态分析必须是概率性的。 (v)由于神经系统能够根据感觉输入来组织行为,因此这些系统的动力学建模必须解释将时间信息转换为组合或组合-时间代码,反之亦然,以进行记忆和识别。在这篇综述中,这些问题是在解决刺激性问题的背景下讨论的:神经科学可以从非线性动力学中学到什么,非线性动力学可以从神经科学中学到什么?

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号